Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ji-Jun Jiang, ${ }^{\text {a }}$ Xing-Qiang Lü, ${ }^{\text {a }}$ Feng Bao, ${ }^{\text {a }}$ Bei-Sheng Kang ${ }^{a}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *
${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.134$
Data-to-parameter ratio $=16.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4-[(Z)-(Benzylamino)phenylmethylene]-5-methyl-2-phenyl-2H-pyrazol-3-one

The NH unit on the exocyclic carbon-carbon double bond in the title compound, $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$, lies on the same side of the double bond as the carbonyl unit of the pyrazolonyl ring, and the two interact through an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond [2.714 (2) Å].

Comment

This is a study on a compound that is related to 5 -methyl-2-phenyl-4-[(Z)-(2-tolylamino)phenylmethylene]-2 H -pyrazol-3-one (Bao et al., 2004), one of a class of pyrazolones that are readily synthesized by condensing 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone with a primary amine. The present compound (Fig. 1) has the isomeric benzylimino unit in place of the 2-tolylimino unit. No significant differences are found in the principal bond dimensions for the two compounds; the packing is similar, as noted from their calculated densities. The present compound also features an intramolecular hydrogen bond.

(I)

Experimental

1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone ($2.5 \mathrm{~g}, \quad 9 \mathrm{mmol}$) and benzylamine ($1 \mathrm{~g}, 9 \mathrm{mmol}$) were dissolved in ethanol (25 ml); the solution was heated under reflux for several hours. The solvent was removed and the pure product obtained upon recrystallization from ethanol in 75% yield.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$	$D_{x}=1.264 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=367.44$	Mo K α radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 872
$a=8.912(1) \AA$	reflections
$b=20.769(3) \AA$	$\theta=2.5-25.9^{\circ}$
$c=10.608(1) \AA$	$\mu=0.08 \mathrm{~mm}^{-1}$
$\beta=79.605(2)^{\circ}$	$T=293(2) \mathrm{K}$
$V=1931.2(4) \AA^{3}$	Prism, yellow
$Z=4$	$0.50 \times 0.38 \times 0.14 \mathrm{~mm}$
Data collection	
Bruker SMART area-detector	2456 reflections with $I>2 \sigma(I)$
diffractometer	$R_{\text {int }}=0.032$
φ and ω scans	$\theta_{\text {max }}=2.22^{\circ}$
Absorption correction: none	$h=-11 \rightarrow 11$
11972 measured reflections	$k=-26 \rightarrow 23$
4250 independent reflections	$l=-10 \rightarrow 13$

Received 1 June 2004 Accepted 4 June 2004 Online 12 June 2004

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0631 P)^{2}\right. \\
& \quad+0.2452 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.00 \\
& \Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}
\end{aligned}
$$

$S=0.99$
4250 reflections
258 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

O1-C7	1.247 (2)	C9-C10	1.489 (3)
N1-C7	1.379 (2)	C11-C12	1.478 (2)
N1-N2	1.399 (2)	C18-C19	1.508 (2)
N1-C1	1.412 (2)	C19-C24	1.378 (2)
N2-C9	1.306 (2)	C19-C20	1.386 (2)
N3-C11	1.321 (2)	C20-C21	1.377 (2)
N3-C18	1.450 (2)	C21-C22	1.364 (3)
C7-C8	1.434 (3)	C22-C23	1.369 (3)
C8-C11	1.395 (2)	C23-C24	1.382 (2)
C8-C9	1.428 (2)		
C7-N1-N2	111.6 (1)	C9-C8-C7	105.4 (1)
C7-N1-C1	128.5 (2)	N2-C9-C8	111.7 (2)
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1$	119.5 (1)	N2-C9-C10	118.9 (2)
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{N} 1$	106.5 (1)	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	129.4 (2)
C11-N3-C18	127.6 (2)	N3-C11-C8	119.2 (2)
C6-C1-N1	121.0 (2)	N3-C11-C12	118.2 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	119.3 (2)	C8-C11-C12	122.6 (2)
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	126.0 (2)	C13-C12-C11	121.3 (2)
O1-C7-C8	129.2 (2)	C17-C12-C11	119.1 (2)
N1-C7-C8	104.9 (2)	N3-C18-C19	114.4 (1)
C11-C8-C9	132.5 (2)	C24-C19-C18	123.5 (2)
C11-C8-C7	122.1 (2)	C20-C19-C18	117.7 (2)

H atoms were placed at calculated positions in the riding model approximation ($\mathrm{C}-\mathrm{H} 0.93 \AA$ for the aromatic H atoms, $\mathrm{C}-\mathrm{H} 0.96 \AA$ for the methyl H atoms and $\mathrm{C}-\mathrm{H} 0.97 \AA$ for the methylene H atoms), with $U_{\text {iso }}=1.2 U_{\text {eq }}$ (parent atom) for the aromatic and methyl C atoms, and $1.5 U_{\text {eq }}$ for the methyl C atom. The amino H atom was located and refined.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve

Figure 1
ORTEPII (Johnson, 1976) plot of $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPI;I (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province, Sun Yat-Sen University and and the University of Malaya for supporting this work.

References

Bao, F., Lü, X.-Q., Wu, Q., Kang, B.-S. \& Ng, S. W. (2004). Acta Cryst. E60, o155-o156.
Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

