Received 1 June 2004 Accepted 4 June 2004

Online 12 June 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Ji-Jun Jiang,<sup>a</sup> Xing-Qiang Lü,<sup>a</sup> Feng Bao,<sup>a</sup> Bei-Sheng Kang<sup>a</sup> and Seik Weng Ng<sup>b</sup>\*

<sup>a</sup>School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

#### **Key indicators**

Single-crystal X-ray study T = 293 K Mean  $\sigma$ (C–C) = 0.003 Å R factor = 0.043 wR factor = 0.134 Data-to-parameter ratio = 16.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# 4-[(*Z*)-(Benzylamino)phenylmethylene]-5-methyl-2-phenyl-2*H*-pyrazol-3-one

The NH unit on the exocyclic carbon-carbon double bond in the title compound,  $C_{24}H_{21}N_3O$ , lies on the same side of the double bond as the carbonyl unit of the pyrazolonyl ring, and the two interact through an N-H···O hydrogen bond [2.714 (2) Å].

# Comment

This is a study on a compound that is related to 5methyl-2-phenyl-4-[(Z)-(2-tolylamino)phenylmethylene]-2Hpyrazol-3-one (Bao *et al.*, 2004), one of a class of pyrazolones that are readily synthesized by condensing 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone with a primary amine. The present compound (Fig. 1) has the isomeric benzylimino unit in place of the 2-tolylimino unit. No significant differences are found in the principal bond dimensions for the two compounds; the packing is similar, as noted from their calculated densities. The present compound also features an intramolecular hydrogen bond.



# **Experimental**

1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone (2.5 g, 9 mmol) and benzylamine (1 g, 9 mmol) were dissolved in ethanol (25 ml); the solution was heated under reflux for several hours. The solvent was removed and the pure product obtained upon recrystallization from ethanol in 75% yield.

| Crystal data                   |                                           |
|--------------------------------|-------------------------------------------|
| $C_{24}H_{21}N_{3}O$           | $D_x = 1.264 \text{ Mg m}^{-3}$           |
| $M_r = 367.44$                 | Mo $K\alpha$ radiation                    |
| Monoclinic, $P2_1/c$           | Cell parameters from 872                  |
| a = 8.912(1)  Å                | reflections                               |
| b = 20.769 (3) Å               | $\theta = 2.5 - 25.9^{\circ}$             |
| c = 10.608 (1)  Å              | $\mu = 0.08 \text{ mm}^{-1}$              |
| $\beta = 79.605 \ (2)^{\circ}$ | T = 293 (2) K                             |
| V = 1931.2 (4) Å <sup>3</sup>  | Prism, yellow                             |
| Z = 4                          | $0.50 \times 0.38 \times 0.14 \text{ mm}$ |
| Data collection                |                                           |
| Bruker SMART area-detector     | 2456 reflections with $I > 2\sigma(I)$    |
| diffractometer                 | $R_{\rm int} = 0.032$                     |
| $\varphi$ and $\omega$ scans   | $\theta_{\rm max} = 27.2^{\circ}$         |
| Absorption correction: none    | $h = -11 \rightarrow 11$                  |
| 11972 measured reflections     | $k = -26 \rightarrow 23$                  |
| 4250 independent reflections   | $l = -10 \rightarrow 13$                  |

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.0631P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.044$ | + 0.2452P]                                                 |
| $wR(F^2) = 0.135$               | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 0.99                        | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 4250 reflections                | $\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$  |
| 258 parameters                  | $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$ |
| H atoms treated by a mixture of |                                                            |
| independent and constrained     |                                                            |
| refinement                      |                                                            |
|                                 |                                                            |

#### Table 1

### Selected geometric parameters (Å, °).

| O1-C7      | 1.247 (2) | C9-C10      | 1.489 (3) |
|------------|-----------|-------------|-----------|
| N1-C7      | 1.379 (2) | C11-C12     | 1.478 (2) |
| N1-N2      | 1.399 (2) | C18-C19     | 1.508 (2) |
| N1-C1      | 1.412 (2) | C19-C24     | 1.378 (2) |
| N2-C9      | 1.306 (2) | C19-C20     | 1.386 (2) |
| N3-C11     | 1.321 (2) | C20-C21     | 1.377 (2) |
| N3-C18     | 1.450 (2) | C21-C22     | 1.364 (3) |
| C7-C8      | 1.434 (3) | C22-C23     | 1.369 (3) |
| C8-C11     | 1.395 (2) | C23-C24     | 1.382 (2) |
| C8-C9      | 1.428 (2) |             |           |
| C7-N1-N2   | 111.6 (1) | C9-C8-C7    | 105.4 (1) |
| C7-N1-C1   | 128.5 (2) | N2-C9-C8    | 111.7 (2) |
| N2-N1-C1   | 119.5 (1) | N2-C9-C10   | 118.9 (2) |
| C9-N2-N1   | 106.5 (1) | C8-C9-C10   | 129.4 (2) |
| C11-N3-C18 | 127.6 (2) | N3-C11-C8   | 119.2 (2) |
| C6-C1-N1   | 121.0 (2) | N3-C11-C12  | 118.2 (2) |
| C2-C1-N1   | 119.3 (2) | C8-C11-C12  | 122.6 (2) |
| O1-C7-N1   | 126.0 (2) | C13-C12-C11 | 121.3 (2) |
| O1-C7-C8   | 129.2 (2) | C17-C12-C11 | 119.1 (2) |
| N1-C7-C8   | 104.9 (2) | N3-C18-C19  | 114.4 (1) |
| C11-C8-C9  | 132.5 (2) | C24-C19-C18 | 123.5 (2) |
| C11-C8-C7  | 122.1 (2) | C20-C19-C18 | 117.7 (2) |

H atoms were placed at calculated positions in the riding model approximation (C–H 0.93 Å for the aromatic H atoms, C–H 0.96 Å for the methyl H atoms and C–H 0.97 Å for the methylene H atoms), with  $U_{\rm iso} = 1.2U_{\rm eq}$  (parent atom) for the aromatic and methyl C atoms, and  $1.5U_{\rm eq}$  for the methyl C atom. The amino H atom was located and refined.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve



#### Figure 1

ORTEPII (Johnson, 1976) plot of  $C_{24}H_{21}N_3O$ , with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPI*;I (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

The authors thank the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province, Sun Yat-Sen University and and the University of Malaya for supporting this work.

# References

- Bao, F., Lü, X.-Q., Wu, Q., Kang, B.-S. & Ng, S. W. (2004). Acta Cryst. E60, 0155–0156.
- Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.